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Transverse Waves in a Relativistic Rigid Body 
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We present relativistic elasticity as a scalar field theory. We apply it to rigid 
bodies, i.e., relativistic bodies with a nonlinear elastic law and a definite longi- 
tudinal wave velocity vt equal to the light velocity, c. We obtain the transverse 
wave equation with a definite velocity v t and the relation between vt, v, and the 
Poisson coefficient is the classical one. This is an indication that we have the 
relativistic extension of a classical Hooke elastic law. 

A rigid body (Born, 1909), i.e., a body where the distance between any 
two points is constant, is a geometric abstraction with no physical existence 
in relativity. In fact, in such a body, the shock wave velocity is necessarily 
infuaite. However, in the framework of special relativity, one can define 
(Brotas, 1969a) a rigid body as one where longitudinal shock waves propa- 
gate with the speed of light c. The elastic law of such a rigid body was first 
derived for a one-dimensional rod (McCrea, 1952;'McCrea and Hogarth, 
1952) and latter generalized for a three-dimensional body with zero Poisson 
coefficient (Brotas, 1969b). Our aim in this note is to derive the equations 
of motion of this so-called rigid body in order to study the propagation of 
transverse waves. 

Let x"  (/~ = 0, 1, 2, 3) be the Cartesian coordinates of an inertial frame 
S ~n the Minkowski space. We label the body "particles" with the coordinates 
ff~ (i = 1, 2, 3). One can describe the motion by the equations ~ =  ~ ( x ~ ) ;  
one can regard the ff~ as scalar fields because their values are independent 
of the coordinate system. 2 Assuming that the equations of adiabatic motion 
can be derived in a variational way from an appropriate Lagrangian density 
~,  function of the fields and their first derivatives, the equations of motion 
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are 

a~ a~  
axi - a,~a(a,X) 

and the energy-momentum tensor, T "", is 

aZe /Lv v T ~ ' " = - g  ~ + ~ a ~  
o(awx ) 

( 1 )  

(2) 

Our problem here is to find the Lagrangian density which corresponds to 
the rigid body. Clearly, in a coordinate system x~, associated with the local 
frame So, where the material point/5(~;) is instantaneously at rest (ao ~i = 0), 
the energy density T OO is equal to the elastic energy density Po since there 
is no kinetic contribution. Hence, we have 

Po = - ~  (3) 

In the coordinate system y"  =-(x ~ ~ )  the metric tensor g"" is such that 
go~ = 0, i.e., 

ds 2 = (@0)2 _ dl~ (4) 

with 

al~o = ~ a~' a~ j (5) 

Since, dlo is the spatial distance in the proper frame So, the set of scalar 
coefficients y~J [elements of the inverse matrix of (y,j)], 

7U = -a&U a~.s 4 (6) 

characterize the body deformation. The elastic energy density Po can only 
depend on the point of the body specified by ~k and on the state of strain 
which is given by 3#. So, equations (3) and (6) show that it is possible to 
define Le as a function of the fields ~ and their derivatives. Note that 0~$ ~ 
are spacelike 4-vectors orthognal to the body velocity u ~' =- (ax'~/ay~ ,. The 
Born rigid motion is given by u~O,~yu =0. On the other hand, for our rigid 
body, equations (1)-(3) and (6) give 

1 apO { apO ~/~..~j~ 
2 0 " y 7 + 0 ~  ~ ~ I =O (7) 

T ~" = g*'"po+ 2 ~  O"ff i OVx j (8) 
Oy ~ 

where we have assumed, without loss of generality, that  Opo/Oy ~j = Opo/ay j~. 
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In order to write Po as an explicit function of y~ we consider the 
particular class of coordinates gi such that yiJ = ;~0 whenever there is no 
deformation. Hence, the classical strain tensor e U is 

e0 = �89 - 6,j) (9) 

In the stationary situation, where s  (Fi)~/2x i (i = 1, 2, 3) with F i con- 
stants, equation (6) shows that the matrix y = (yg) is diagonal and y " - - F  i. 
The Brotas rigid solid, S, with mass density pO(~g) has an energy density 
p~ given by (Brotas, 1969b) 

0 
P~ 1)(r2+ 1)(r3+ 1) (10) P o - - - - y .  

and a diagonal stress tensor with 

o 
r ~ = y .  " P~ 1)(r2+ l)(r3+ l) (ll) 

and the other T~ i are obtained from T~s ~ by permutation of F i and F ~. We 
observe that equation (10) can be written as 

0 

p~ = s (XO+ a~ + ~ +  1) (12) 

with 

)to = det y 

A1 = t r y  (13) 

h 2 =  A11+ A22 + A 33 

where A ~ are the y cofactors. Since we are dealing with the class of 
coordinates s such that e 0 = 0 is an invariant equation, the expression of 
Po as a function of Ao, ;q, A2 is also invariant. This is true because any two 
coordinate systems of this class are necessarily related by an orthogonal 
transformation, under which the ;ti are invariants. These transformations 
represent rotations, inversions, or permutations of the axis in the s space. 
So the elastic law (12) is clearly isotropic, since the functional dependence 
of p~ on y'J does not depend on the choice of the body axis. Reciprocally, 
for any isotropic law, since y can be diagonalized, po is a symmetric 
function of  the y eigenvalues, F', which are determined by the Aj. Thus we 
have shown that for any isotropic elastic law Po depends on y through the 
invariants ho, h~, h2. 

Using the elastic law (12) and equation (8) we derived the diagonalized 
stress tensor given by (11). On the other hand from the equations of motion 
(7) we obtained the velocity of the transverse waves v, : c/x/-2. We observe 
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that the relation between v, and the longitudinal wave velocity, vt = c, is 
characteristic of  a solid with zero Poisson coefficient, o-. One can idealize 3 
a solid with arbitrary cr as a point by point superposition and binding of 
a pure solid (o-=0)  with density ( 1 - a ) p  ~ and a liquid with density ap  ~ 
(0--- a -< 1). Naturally, we try the elastic law 

po = (1 s l - a ) p o +  ozpo (14) 

where p~ and p~ are the energy densities of  the pure rigid solid and the 
rigid liquid, respectively. For the latter we use 

o 
poL=2(Ao+  1 ) (15) 

which is a generalization of  McCrea 's  one-dimensional law 

0 
P o = 2 ( y ' l +  1) (16) 

In fact, in the one-dimensional case the proper  length dlo is 

dlo --- ( 7 1 1 )  - 1 / 2  d~ 

whereas in the liquid, or solid, the proper  volume is Ao t/2 d~7 d)~ d~. Hence, 
the replacement 71~-  Ao leads to the liquid law. 

Let us now study the propagation of  transverse waves in a material 
with an elastic law given by equation (14). For simplicity, we shall consider 
a homogeneous two-dimensional material, i.e., po ~ is constant and ~ =  z. 
Then equation (7) lead to 

O ~ [ ( l l - @ ~ a + y 2 2 ) O ~ g - 7 1 2 0 ~ , ]  = 0  (17g.) 

1 - a ~ _ O " X ]  0~[(l---~-~-ol q-7 1)0~y-- 712 ~ = 0  ( 17)7) 

where the first equation refers to the field ~ and the second one to )7. Clearly, 
if in these equations we make )7 = y we obtain 0~, 0 ~  = 0, which corresponds 
to a longitudinal wave velocity equal to c. For a transversal signal e 
propagat ing along the x x  axis, we have ~ = x, )7 = y - e(  t, x )  and the previous 
equations give 

Oe 02E OE 02E 
- -  ~ = 0  ( 1 8 x )  

Ot Ot Ox Ox Ot 2 

02 e 1 -  a 02e 
:0 (18)7) 

Ot 2 2 Ox 2 

3The author is indebted to A. Brotas for explicitly pointing out this idea. 
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Obviously, any function e = f ( x  i v,t)  with 

vt = - -  c (19) 

is a solution of equation (181f). Although equation (18~) is not linear it is 
easy to see that it has the same solution. The nonlinearity of equation (18:~) 
invalidates the superposition principle. This is a relativistic feature. Lineariz- 
ing the expression of the stationary stress tensor, T =  ( 1 -  o~)Ts + aTL [cf. 
equations (11) and (15)], one obtains for the Poisson coefficient o-, 

o/ 
= - -  ( 2 0 )  

l+c~ 

It is interesting to point out that equation (20) implies the classical range 
of variation for or, 0_< or_< 1/2. Using this result in equation (t9) we obtain 

1 - 2 ~ r  
( v t / v t )  2 (21) 

2(1 -o-)  

which is a well-known classical result. This we regard as an indication that 
the nonlinear elastic law (14) is the relativistic extension of an Hooke law. 
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